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S U M M A R Y  
Constructing a bi-orthogonality relation it is indicated how the solutions for the bending of a sector plate clamped 
along the radial edges and with physically meaningful boundary functions prescribed on the curved edge can be 
directly reduced to an infinite system of linear algebraic equations. Some numerical results are presented for the bending 
of a uniformly loaded clamped sector plate. 

1. Introduction 

The bending of a clamped sector plate under uniform load has been the subject of investigation 
by Carrier [1], Hasse [2], Carrier and Shaw [3], Conway and Huang [4], Morley [5] and a 
few others. Various approximate solutions to this problem have been suggested by these authors. 
Morley has given an exhaustive analysis of the existing literature on this problem and also its 
importance from the structural and mechanical engineering design points of view. Biharmonic 
eigen function expansions have been used by quite a few authors and mainly due to the non- 
availability of a suitable orthogonality relation it has not been possible to reduce the solution 
of the problem directly to a linear algebraic system of equations. 

In the present paper we have constructed a bi-orthogonality relation for the eigen functions 
of the bi-harmonic equation in polar coordinates when the function and its derivative is made 
to vanish on the radial edges. Using this relation we have shown how the solutions for the 
bending of a sector plate clamped along the radial edges and with (a) deflection and slope or 
(b) deflection and moment or (c) moment and shear force prescribed on the curved edge canhe 
reduced to an infinite system of linear algebraic equations. As an example we have considered 
the bending of a uniformly loaded clamped sector plate. We have presented some numerical 
results for the deflection of the central line when the semi-sector angle is 15 ~ . 

Similar bi-orthogonality relations for the eigen functions of the bi-harmonic equation for 
rectangular and cylindrical geometries can be found in [6], [7]. 

2. Basic Equations 

We assume that the sector plate occupies the region 0_< r < 1, -a_< 0_< c~ and that the radial 
edges 0= ___c~ are clamped. Let the functionsf~l)(O),f(z)(O), Mr(O) and V~ (0) denote respectively 
the deflection, the slope, the moment and the shear force on the curved edge r = 1. The governing 
differential equation and the boundary conditions are given by 

AAw = 0 0 _  r_< 1, - a <  0_< a (2.1) 

~w 
w -  - 0 on 0 =  •  (2.2) 

80 

On r=  1 we have 

w = f(1)(O) (2.3a) 

0w 
or (2.3b1 
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and 

[-02w (1 0w 1 02w~] 
M r = - O ~ - r 2  + a r ~rr + ~  002;3 

[ ~ r  (1 -~ )9 (~  02w 1 0/) 1 
V r = - D  (Aw) + r 00 9r90 r 2 

(2.3c) 

(2.3d) 

where w denotes the deflection and A in polar coordinates (r, 0) is given by 

0 2 1 9 1 9 2 

~1 -~ ~r2 + - + - -  r ~r 7 902. 
The constants o- and D denote the Poisson's ratio and the flexural rigidity respectively. 

We assume that the solution of (2.1) is given by 

w = Z a, rZ"+lV,(O) . (2.4) 
n 

Upon substituting in (2.1), and (2.2) we get 

iv  2 F,' +2(2,  + 1)F~'+ (22 - 1)2F, = 0 (2.5a) 
with 

F .  = F ;  = 0 o n  0 = +_c~. (2.5b) 
The "even solutions" of (2.5) are given by 

F,(O) = cos (2,+ 1)c~ cos ( 2 , -  1 )0 -cos  ( 2 , -  1) e cos (2,+ 1)0 (2.6) 

where the 2,'s are the roots of the equation 

sin 22c~ + 2 sin 2~ = 0. (2.7) 

It may be noted that the summation in (2.4) is extended over those eigenvalues of (2.7) whose 
real part is positive. 

The roots of (2.7) which are symmetrically located over the four quadrants in the complex 
2-plane can be calculated in any desired degree of accuracy using as the first approximation the 
asymptotic form for 2, and then followed by Newton's iterative method. 

The asymptotic form is given by 

2 . - ~ ( 4 n - 1 ) ~ +  i ~ l o g  ( 4 n - 1 ) ~ s i n 2 e  . 

The first ten roots of (2.7) have been calculated for e = 15 ~ 

3. Bi-Orthogonality Relation 

We now define the operator A* as follows: 
92 1 0 1 02 

A* - + - -  - -  
972 7 0r 72 902. 

us denote the values of A* w and ~ (A* w) on r = 1 by f(3)(0) and f(4)(0) respectively. Let 
u r  

We now identify the functions f(i)(O), (i= 1, 2, 3, 4) related to F, and Fs as follows 

f(i) = ~a,~(i)(O) (3.1) 

4~(, 1) = F, (3.2a) 

4512) = (2, + 1)F, (3.2b) 

( 3 )  __ rt 2 �9 , - Fs + (2, - 1)F, (3.2c) 

~(4) = ( 2 , -  1)F;'+ ( 2 , -  1)(2, ~ - 1) r , .  (3.2d) 
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Let 2,, and 2, be the eigenvalues corresponding to the eigenfunctions F" and F, respectively, 
Then we have from (2.5) 

f~  ~ + 2 (22 + 1)F 2 + (22 - 1) 2 F m = 0 (3.3a) 

iv 2 :, F,' +2(2 ,  + 1)F,; + (,~2 _ 1)2e, = 0 (3.3b) 

with 

Fm= F,~ = F, = F; = 0 on 0 = __+c~. (3.3c) 

Upon multiplying (3.3a) by -2 (3.3b) by 2 z,,  2" subtracting and integrating by parts we get using 
(3.3c) 

2 2 ~ [  l : ( / ~ m - - } m )  [ 2 F ~ , F ; - -  2 2 (2m + 2, - 2)F"F,]dO = O . 
. 14  

It follows that  

[2F~, Fs - (2m + 2~ - 2) F~ F,] dO = 0 ( m r  n) (3.4) 

We have 

i g o r )  ~4~ ~2~ <3) ,, gon +gore gO ]dO = [Fm{()Ln-1)F s +(2n-1)(J .z -1)Vn} 

+ (,~m+ S " 1)Fro tel, +(3t2n-1)F,}]dO. 

Integrating the right side by parts and upon using conditions (3.3c) it follows 

[ g o ~  ~4~ ~ ~3) _ , , _ go, +go,, ~ ,  ] d O - - ( 2 " + 2 . )  _ [FmF~-(22-1)FmF,]dO. (3.5a) 

Interchanging m and n in (3.5a) we get 

*+~ r ~ ( 3 )  0~(2) ~_ (4) (1) , , obm g), ]dO - ( 2m+2 , )  rF~,F[,-(22-1)FmV,]dO (3.5b) - ~  L m ~ .  / = _ 

Upon adding (3.5a) and (3.5b) we get 

f += [ ~ ( ~ )  (4) (2) (3) O~(3) d~(2) .4.. (1~)(4) ~ ( 1 ) ' ]  t](~ 

= - ( , L + , L )  , , 2 [2FmF,;-(2m + 2 . -2)FmF,]dO = 0 for m ~ n from equation (3.4). 

It therefore follows 

I + ~ F r o . )  ~ , 4 )  ~_ flb(z) (/5(3) A- (3) (4) (4) (1) L ~ m  - - .  - -  ~ m  ~ n  - -  gom gon + ~)m ~)n 3 dO = O ( re#n)  (3.6) 

(3.6) is our required bi-orthogonali ty relation. 
For  m = n it follows upon simplification that the left-hand side of (3.6) is 

f +~ g, c2)~b(s)] dO (3.7a) K n = 2 [4~,~ ~b,c4) + 
- r 

= - 42, (cos 22, c~ + cos 2c~)(2c~ cos 22. e + sin 2e).  (3.7b) 

4, Eigenfunetion Expansions 

Using (3.6) we can now find the constants a, in the eigenfunction expansion (3.1) viz., 

fco = Z a, ob~~ (i = 1, 2, 3, 4). 

It follows that  
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= 4), + f  4), + f  q). ]dO. (4.1) a,K, [f(1)4)(4)+f(2) ( 3 ) ' ( 3 ) ( 2 )  (4) (1) 

Using (2.3c) and (2.3d) it can easily be shown that f(3)(0) and f(4)0 are related to Mr(O) and 
V~(0) as follows. 

1 d2f (1) (4.2) 
f3(O) = - ~ M r - ( l  +(r)f2(O) + ( l - a )  dO 2 

1 2 f(4)(0) = -- ~ Vr+ -DMr+2(l+cr)f(2)-(1-a) d2f(z)~ + (1 + a)" dZf(1)~ (4.3) 

Case (a) 
When deflection and slope are prescribed on the curved edge r = 1, we take 

f(3)(O) = X a,,4)~)(O), f(4)(0) = X am4)~)(O) 

and k follows from (4.1) 

f = 4),, +4).  4).~ ]dO. a,K, [f(1)4)(n4)+f(z)4)(3)]dO+ am [4)(n 1) (4) (2) (3) 

Using (3.7a) the above equation can now be written in the form 

a, = G, + ~ a"S", (4.4) 
m 

where 

f+i 1 If(l) 4)(4)+f(2)4)(3) 3 dO (4.5) G ,=  ~ _ 

and 
i {+= (a) (4) = 4). q),. ] d O .  (4.6) S,.n Knn J-ca [4)n 4),. q- ( 2 ) ( 3 )  

Using (3.7a) we get 

Sn.--�89 

= 222,.(2,. + 2") s i n 2 ~ 2  2 2 2 [ (2n2-1)(c~ 22"a+c~ 2~) -  (2~-  i)(c~ 22"a+c~ 2~)] 
S,., {(2,,+2, - 4 )  -42"2 ,}  (cos 22,~+cos 2~)(2~ cos 22,a+sin 2~) 

(m # n). 

Case (b) 
When deflection and moment are prescribed on the curved edge, we take 

f(:)(O) = Xam4)(" z) ; f (4)(O)Zam~ ) 

and using (4.2) we have 

f(3)(O)- yMr(O) + ( 1 -  a) d2f(1)d0-- ~ -  - ( l + a )  Z a" 4)~ )'. 

It follows from (4.1) 

a. = ~ f(t)4)~4) -- ~-Mr 4)~2)+ ( 1 -  ~r) ~ - "  d2f(1)4)(2) dO 

1 f+~ ((b(2) (b(3) 4. (b(4) di(t) _ (1 + 0_) 4)~) 4)(2) } d0 

The above equation is in the same form as (4.4). 
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Case (c) 
When moment and shear force are prescribed on the curved edge, we take 

f (x)  = ~.,am.. .  m,qi(1) . f ( 2 ) ,  = Z a,, ~(2) 

and using (4.2) and (4.3) we have 

d2 (I_)(mt ~ )  
f ( 3 ) _  Mr ( l + a )  Z a m O ( n Z ) + ( l _ a ) E a m  dO e 

D 

_ _ __ 2 M  r d2 ~]~(m 1 ) 
f ( ~ ) _  V~ + + 2 ( l + a ) Z a m ~ ) + ( l + a ) Z a m  ( l - a )  s a , , - -  

D D dO 2 

d 2 ~(m 2) 

dO 2 

It follows from (4.1) 

1f+i  a, = ~,, _ ~ {-Mr~b~)+(2Mr - V,)q~(,1)}d0 

+ K n  am _ m ~n q---m --n 

{d2 (~(rnl) ~2)__ ~(1) d2 ~(m2)~ 
+ ( l - a )  dO 2 j 

r )}1 + (1 + a) )9  c~(2) cb<l)- 0)(2)~(2) + ~ *m dO. 

The above equation is in the same form as the equation (4.4). 

5. Uniformly Loaded Clamped Sector Plate 

We shall now consider the particular case of a uniformly loaded clamped sector plate. The 
governing differential equation is 

A A w ' =  qo (5.1) 
D 

where w' denotes the deflection, qo the load and D the flexural rigidity. 
The boundary conditions along the clamped edge r = 1 are 

~w' 
w ' -  - o .  (5.2) & 

We take the solution of (5.1) in the form 

w'= w+wl  (5.3) 

where w is the solution of the homogeneous equation given by (2.1) and wl is the particular 
solution of (5.1) corresponding to uniform load qo. The solution for Wl satisfying the condition 
of clamped radial edges is given by 

qo r4 
wl - [-2+ cos 4 ~ - 4  cos 2~ cos 20+cos  40] .  (5.4) 

D 64(2+cos 4~) 

Using (5.2) and (5.3) we get on r =  1 

w = fO)(0) = - wl (1, 0) (5.5a) 
and 

Ow 
Or - f(e/(0) = - 4w 1 (1, 0). (5.5b) 
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Substituting the above values o f f  (~(0) and f(2)(O) in (4.4) we get upon the evaluation of the 
integral 

2 , (2 ,+3)  sin 2~ [ 21 (2~-  1) cos 4~ 12 cos 2~(cos 22,~ + cos 2c~!] 
G, = 2(2+cos  4cc)K, i2,7-9) (2, 2 - 9 ) ( 2 2 - 2 5 )  - (2, 2 -1) (2 ,2-25)  - ' 

Equation (4.4) is a system of infinite equations in infinitely many unknowns. By truncation 
the value of a, can be determined to any desired degree of accuracy. 

6. Numerical Results 

To determine the constants a,, we have truncated the system (4.4) at m = 5, 10. We give below 
the deflection of the central line 0 = 0 for e = 15 ~ The results we have obtained agree very well 
with those given by Morley [5]. 

The first ten roots of the equation sin 22~ + 2 sin 2c~ = 0 are also given here. 
The calculation for the bending moments have been carried out along the radial edges and 

the central line 0 = 0. 

Roots of sin 22e + 2 sin 2~ = 0 
for c~ = 15 ~ 

Deflection of the central line 0 = 0  
for ~ = 15 ~ and m =  5 

n Roots 2, r (D/q) 105 w'(1, 0) 

1 8.06296 + i 4.20286 0 0.000 
2 20.46721 + i 5.83600 0.125 0.005 
3 32.61272 6.69310 0.250 0.088 
4 44.69125 7.28117 0.375 0.449 
5 56.74125 7.72996 0.500 1.430 
6 68.77619 8.09308 0.625 3.178 
7 80.80215 8.39808 0.750 4.571 
8 92.82226 8.66103 0.875 3.085(3.083)[3.080] 
9 104.83836 8.89214 1.000 0.005(0.007)[0.002] 

10 116.85157 9.09829 

The values in parentheses are those obtained by Morley through a variational principle for 
m =  5 and the values in brackets are those obtained by the authors for m= 10. 

Bending moments on the radial edges and the central line 0 =0  for ~ = 15 ~ and m= 5 

r (103/qo)M~(r, O) (103/qo)Mo(r, O) (103/qo)Mo(r, ~) 

0 0 0 0 
0.125 0.017 0.183 --0.391 
0.250 0.065 0.730 -- 1.562 
0.375 0.134 1.658 -- 3.545 
0.500 0.393 3.009 -- 6.419 
0.625 1.456 4.507 -- 9.554 
0.750 3.306(3.304) [3.305] 5.020(5.018) [5.018] - 10.565(-  10.564) [ -  10.563] 
0.875 2.602 (2.600) [2.600] 2.887 (2.879) [2.882] - 6.323 ( -  6.320) [ -  6.325] 
1.000 - 9 . 2 3 7 ( - 9 . 0 2 5 ) [ - 9 . 0 1 8 ]  - 2 . 8 2 8 ( - 2 . 7 0 8 ) [ - 2 . 7 0 5 ]  0.120(0.137)[0.019] 
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Conchdmg Rema~s 

It is shown how the bi-orthogonality relation presented here can be used to obtain solutions 
for the bending if a sector plate clamped along the radial edges and under arbitrary loadings 
on the curved edge. The numerical results presented here for the bending of a uniformly loaded 
clamped sector plate shows remarkable agreement with those obtained by Morley using a 
variational principle. It is interesting to note that though the boundary condition on the 
curved edge is approximately satisfied a good part  of the deflected surface is indeed well re- 
presented around that edge. 

The authors believe that the bi-orthogonality relation presented here makes the "sector- 
problem" simple and direct. 
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